In this paper, we use the Hawkes process to model the sequence of failure, i.e., events of compressor station and conduct survival analysis on various failure events of the compressor station. However, until now, nearly all relevant literatures of the Hawkes point processes assume that the base intensity of the conditional intensity function is time-invariant. This assumption is apparently too harsh to be verified. For example, in the practical application, including financial analysis, reliability analysis, survival analysis and social network analysis, the base intensity of the truth conditional intensity function is very likely to be time-varying. The constant base intensity will not reflect the base probability of the failure occurring over time. Thus, in order to solve this problem, in this paper, we propose a new time-varying base intensity, for example, which is from Weibull distribution. First, we introduce the base intensity from the Weibull distribution, and then we propose an effective learning algorithm by maximum likelihood estimator. Experiments on the constant base intensity synthetic data, time-varying base intensity synthetic data, and real-world data show that our method can learn the triggering patterns of the Hawkes processes and the time-varying base intensity simultaneously and robustly. Experiments on the real-world data reveal the Granger causality of different kinds of failures and the base probability of failure varying over time.
翻译:在本文中,我们使用霍克斯进程来模拟失败的顺序,即压缩机站事件,并对压缩机站的各种故障事件进行生存分析。然而,到目前为止,霍克斯点进程的几乎所有相关文献都假定,有条件强度功能的基础强度是时间变化性的。这一假设显然过于苛刻,难以核实。例如,在实际应用中,包括金融分析、可靠性分析、生存分析和社会网络分析,受事实条件条件制约的强度功能的基础强度极有可能是时间变化的。恒定基强度不会反映随着时间的推移发生的故障的基本概率。因此,为了解决这个问题,我们在本文件中提出一个新的时间变化基强度,例如,来自魏布尔分布的新的时间变化基强度。首先,我们从魏布尔分布中引入基础强度,然后我们提出由最大可能性估计员进行的有效学习算法。对恒定基础强度合成数据进行实验,时间变化基准强度合成数据,以及真实世界数据显示,我们的方法可以同时学习不同时间变化的概率模型,从而在恒定的实验基础上,并显示我们的方法可以同时学习恒定地导致世界的概率度。