This paper aims to initialize a dynamical aspect of symbolic integration by studying stability problems in differential fields. We present some basic properties of stable elementary functions and D-finite power series that enable us to characterize three special families of stable elementary functions involving rational functions, logarithmic functions, and exponential functions. Some problems for future studies are proposed towards deeper dynamical studies in differential and difference algebra.
翻译:本文旨在通过研究不同领域的稳定性问题,开创象征性融合的动态方面,我们提出了稳定基本功能和D-无限权力系列的一些基本特性,使我们能够确定三个稳定基本功能的特殊组合,这些功能包括理性功能、对数功能和指数函数。 提出了一些未来研究的问题,目的是对差异和差异代数进行更深入的动态研究。