In this paper we introduce a new combinatorial approach to analyze the trace of large powers of Wigner matrices. Our approach is motivated from the paper by \citet{sosh}. However the counting approach is different. We start with classical word sentence approach similar to \citet{AZ05} and take the motivation from \citet{sinaisosh}, \citet{sosh} and \citet{peche2009universality} to encode the words to objects similar to Dyck paths. To be precise the map takes a word to a Dyck path with some edges removed from it. Using this new counting we prove edge universality for large Wigner matrices with sub-Gaussian entries. One novelty of this approach is unlike \citet{sinaisosh}, \citet{sosh} and \citet{peche2009universality} we do not need to assume the entries of the matrices are symmetrically distributed around $0$. The main technical contribution of this paper is two folded. Firstly we produce an encoding of the ``contributing words" (for definition one might look at Section \ref{sec:word}) of the Wigner matrix which retrieves the edge universality. Hence this is the best one can do. We hope this method will be applicable to many other scenarios in random matrices. Secondly in course of the paper we give a combinatorial description of the GOE Tracy Widom law. The explanation for GUE is very similar. This explanation might be important for the models where exact calculations are not available but some combinatorial structures are present.
翻译:在本文中, 我们引入了一种新的组合式方法来分析 Wigner 矩阵大功率的跟踪 。 我们的方法由\ citet{ shosh} 驱动, 但是计数方法不同 。 我们从类似\ citet{ AZ05} 的经典单词句法开始, 取自\ citet{ sinaisosh} 、\ citet{shosh} 和\ citet{ peche2009 普遍性} 的动机, 将单词编码到与 Dyck 路径相类似的对象 。 要准确, 地图需要从 Dyck 路径上找到一个单词, 并删除一些边缘 。 使用这个新的计数方法, 我们证明 大的 Wigner 矩阵具有边际 普遍性 。 与 citetreax 一样, Gssocialtral 一样, 我们不必假定该矩阵的条目是按正值顺序排列的。 本文的主要技术说明是两个边框 。