Music information retrieval (MIR) has gone through an explosive development with the advancement of deep learning in recent years. However, music genres like electronic dance music (EDM) has always been relatively less investigated compared to others. Considering its wide range of applications, we present a Python package for automated EDM audio generation as an infrastructure for MIR for EDM songs, to mitigate the difficulty of acquiring labelled data. It is a convenient tool that could be easily concatenated to the end of many symbolic music generation pipelines. Inside this package, we provide a framework to build professional-level templates that could render a well-produced track from specified melody and chords, or produce massive tracks given only a specific key by our probabilistic symbolic melody generator. Experiments show that our mixes could achieve the same quality of the original reference songs produced by world-famous artists, with respect to both subjective and objective criteria. Our code is accessible in this repository: https://github.com/Gariscat/loopy and the official site of the project is also online https://loopy4edm.com .


翻译:音乐信息检索(MIR)在近年来深度学习的进步中取得了爆炸性的发展。然而,像电子舞曲(EDM)这样的音乐类型在相对较少的调查中。考虑到其广泛的应用,我们提供了一个Python包作为MIR基础设施,用于EDM歌曲的自动化生成,以缓解获取标记数据的困难。这是一个方便的工具,可以轻松连接到许多符号音乐生成管道的末端。在这个包中,我们提供了一个框架来构建专业水平的模板,可以从指定的旋律和和弦渲染出一个制作精良的曲目,或者通过我们的概率符号旋律生成器只给定一个特定的键就可以产生大规模的曲目。实验证明,我们的混音可以以客观和主观标准实现与世界著名艺术家制作的原始参考曲目相同的质量。我们的代码可以在这个存储库中访问:https://github.com/Gariscat/loopy,并且该项目的官方网站也在线上https://loopy4edm.com。

0
下载
关闭预览

相关内容

音乐,广义而言,指精心组织声音,并将其排布在时间和空间上的艺术类型。
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
44+阅读 · 2022年9月6日
A Survey on Data Augmentation for Text Classification
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员