Non-recurrent and unpredictable traffic events directly influence road traffic conditions. There is a need for dynamic monitoring and prediction of these unpredictable events to improve road network management. The problem with the existing traditional methods (flow or speed studies) is that the coverage of many Indian roads is very sparse and reproducible methods to identify and describe the events are not available. Addition of some other form of data is essential to help with this problem. This could be real-time speed monitoring data like Google Maps, Waze, etc. or social data like Twitter, Facebook, etc. In this paper, an unsupervised learning model is used to perform effective tweet classification for enhancing Indian traffic data. The model uses word-embeddings to calculate semantic similarity and achieves a test score of 94.7%.
翻译:非经常性和不可预测的交通事件直接影响到道路交通条件。需要对这些不可预测的事件进行动态监测和预测,以改善道路网络管理。现有传统方法(流量或速度研究)的问题在于许多印度公路的覆盖面非常稀少,无法复制查明和描述事件的方法。增加某些其他形式的数据对于帮助解决这一问题至关重要。这可以是实时速度监测数据,如谷歌地图、瓦泽等,也可以是社会数据,如推特、脸书等。在本文中,使用一个不受监督的学习模式来进行有效的推文分类,以加强印度交通数据。模型使用文字拼写来计算语义相似性,并达到94.7%的测试分数。