We invent a novel method of finding principal components in multivariate data sets that lie on an embedded nonlinear Riemannian manifold within a higher-dimensional space. Our aim is to extend the geometric interpretation of PCA, while being able to capture non-geodesic modes of variation in the data. We introduce the concept of a principal sub-manifold, a manifold passing through the center of the data, and at any point on the manifold extending in the direction of highest variation in the space spanned by the eigenvectors of the local tangent space PCA. Compared to recent work for the case where the sub-manifold is of dimension one \citep{Panaretos2014}--essentially a curve lying on the manifold attempting to capture one-dimensional variation--the current setting is much more general. The principal sub-manifold is therefore an extension of the principal flow, accommodating to capture higher dimensional variation in the data. We show the principal sub-manifold yields the ball spanned by the usual principal components in Euclidean space. By means of examples, we illustrate how to find, use and interpret a principal sub-manifold and we present an application in shape analysis.


翻译:我们发明了一种新颖的方法,在多变量数据集中找到位于高维空间内嵌入的非线性里伊曼尼方元体的主要组成部分。 我们的目标是扩展对五氯苯甲醚的几何解释,同时能够捕捉到数据中的非地球变化模式。 我们引入了主要子元子体的概念, 一种通过数据中心穿过的多元体, 以及从多元体向空间最大变异方向延伸的方块, 由当地切口空间中切口器的导体所覆盖。 与子元体为维度为一维\ citep{ Panaretos2014} 的最近工作相比, 我们用示例的方式说明如何找到、 使用和解释一个元件分析, 并用目前的方法来解释一个元件的形状。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Bootstrapping Through Discrete Convolutional Methods
Arxiv
0+阅读 · 2021年7月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员