The topic of this tutorial is Least Squares Sparse Principal Components Analysis (LS SPCA) which is a simple method for computing approximated Principal Components which are combinations of only a few of the observed variables. Analogously to Principal Components, these components are uncorrelated and sequentially best approximate the dataset. The derivation of LS SPCA is intuitive for anyone familiar with linear regression. Since LS SPCA is based on a different optimality from other SPCA methods and does not suffer from their serious drawbacks. I will demonstrate on two datasets how useful and parsimonious sparse PCs can be computed. An R package for computing LS SPCA is available for download.


翻译:本教程的主题是最小平方偏差主构件分析(LSSPCA),这是一个计算近似主构件的简单方法,只有少数观察变量的组合。与主构件类似,这些构件与主构件没有关联,顺序上最接近数据集。LS SPCA的衍生对熟悉线性回归的任何人来说都是不直观的。由于LS SPCA与其他SPCA方法不同,具有不同的最佳性,没有严重缺陷。我将用两套数据集来说明如何计算有用和稀有的PC。计算 LS SPCA的R包可以下载。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年7月18日
Arxiv
0+阅读 · 2021年7月17日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员