For probability measures supported on countable spaces we derive limit distributions for empirical entropic optimal transport quantities. In particular, we prove that the corresponding plan converges weakly to a centered Gaussian process. Furthermore, its optimal value is shown to be asymptotically normal. The results are valid for a large class of ground cost functions and generalize recently obtained limit laws for empirical entropic optimal transport quantities on finite spaces. Our proofs are based on a sensitivity analysis with respect to a weighted $\ell^1$-norm relying on the dual formulation of entropic optimal transport as well as necessary and sufficient optimality conditions for the entropic transport plan. This can be used to derive weak convergence of the empirical entropic optimal transport plan and value that results in weighted Borisov-Dudley-Durst conditions on the underlying probability measures. The weights are linked to an exponential penalty term for dual entropic optimal transport and the underlying ground cost function under consideration. Finally, statistical applications, such as bootstrap, are discussed.
翻译:对于在可计算空间上支持的概率措施,我们从实验性热量最佳运输量中获取的分布限制。特别是,我们证明相应的计划与核心高斯进程不甚一致。此外,其最佳价值被证明为非现成的正常。结果对一大批地面成本功能有效,并推广最近获得的有限空间实验性热量最佳运输量限制法。我们的证据是基于对一个加权的当量美元=1美元-诺尔姆的敏感性分析,该当量值依赖双倍配方的热量最佳运输,以及对于进量运输计划来说必要和足够的最佳条件。这可用于使实验性最佳运输计划和价值的微弱趋同,从而导致对鲍里索夫-杜利-杜尔斯特的概率计量加权条件。重量与双向热最佳运输的指数性惩罚术语以及正在审议的地面成本功能有关。最后,讨论了诸如靴杆等统计应用。