We propose the novel augmented Gaussian random field (AGRF), which is a universal framework incorporating the data of observable and derivatives of any order. Rigorous theory is established. We prove that under certain conditions, the observable and its derivatives of any order are governed by a single Gaussian random field, which is the aforementioned AGRF. As a corollary, the statement ``the derivative of a Gaussian process remains a Gaussian process'' is validated, since the derivative is represented by a part of the AGRF. Moreover, a computational method corresponding to the universal AGRF framework is constructed. Both noiseless and noisy scenarios are considered. Formulas of the posterior distributions are deduced in a nice closed form. A significant advantage of our computational method is that the universal AGRF framework provides a natural way to incorporate arbitrary order derivatives and deal with missing data. We use four numerical examples to demonstrate the effectiveness of the computational method. The numerical examples are composite function, damped harmonic oscillator, Korteweg-De Vries equation, and Burgers' equation.


翻译:我们提议增加高斯随机字段(AGRF),这是一个包含任何顺序的可观测数据和衍生物数据的普遍框架。严格理论已经确立。我们证明,在某些条件下,任何顺序的可观测及其衍生物都由一个单一高斯随机字段(即上述的AGRF)管理。因此,“高斯过程的衍生物”声明“高斯过程的衍生物仍然是一个高斯过程”得到验证,因为衍生物由AGRF的一部分来代表。此外,还构建了一种与通用的AGRF框架相对应的计算方法。既无噪音又吵闹的情景都得到了考虑。后方分布的公式是以良好的封闭形式推断的。我们计算方法的一个重大优点是,通用的AGRF框架提供了一种自然方式,将任意排序衍生物纳入并处理缺失的数据。我们用四个数字示例来证明计算方法的有效性。数字实例是复合功能、调和调调调调振器、Korteweg-de Vrie等和Burgers的等式。

0
下载
关闭预览

相关内容

【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
VIP会员
相关VIP内容
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员