Changepoint detection is an important problem with applications across many application domains. There are many different types of changes that one may wish to detect, and a wide-range of algorithms and software for detecting them. However there are relatively few approaches for detecting changes-in-slope in the mean of a signal plus noise model. We describe the R package, cpop, available on the Comprehensive R Archive Network (CRAN). This package implements CPOP, a dynamic programming algorithm, to find the optimal set of changes that minimises an L_0 penalised cost, with the cost being a weighted residual sum of squares. The package has extended the CPOP algorithm so it can analyse data that is unevenly spaced, allow for heterogeneous noise variance, and allows for a grid of potential change locations to be different from the locations of the data points. There is also an implementation that uses the CROPS algorithm to detect all segmentations that are optimal as you vary the L_0 penalty for adding a change across a continuous range of values.
翻译:改变点检测是许多应用领域应用中的一个重要问题。 有许多不同的变化类型, 人们可能希望检测到, 以及用于检测它们的各种算法和软件。 但是,在信号加噪音模型的平均值中, 检测在移动中的变化的方法相对较少。 我们描述了在综合档案网络( CRAAN) 上可用的 R 软件包, 即 cpop 。 这个软件包执行 CPOP (一种动态编程算法), 以找到最佳的变化组合, 最大限度地减少 L_ 0 处罚成本, 成本是 平方的加权剩余总和。 软件包扩展了 CPOP 算法, 以便分析分布不均的数据, 允许差异性噪音差异, 并允许潜在变化地点的网格与数据点的位置不同。 还有一个实施程序, 使用 CROOPS 算法来检测所有最优化的区段, 因为您会改变 L_ 0 处罚, 以在连续的值范围内添加变化 。