The COVID-19 pandemic has highlighted the need for innovative solutions to monitor and control the spread of infectious diseases. With the potential for future pandemics and the risk of outbreaks particularly in academic institutions, there is a pressing need for effective approaches to monitor and manage such diseases. Contact tracing using Global Positioning Systems (GPS) has been found to be the most prevalent method to detect and tackle the extent of outbreaks during the pandemic. However, these services suffer from the inherent problems of infringement of data privacy that creates hindrance in adoption of the technology. Non-cellular wireless technologies on the other hand are well-suited to provide secure contact tracing methods. Such approaches integrated with the Internet of Things (IoT) have a great potential to aid in the fight against any type of infectious diseases. In response, we present a unique approach that utilizes an IoT based generic framework to identify individuals who may have been exposed to the virus, using contact tracing methods, without compromising the privacy aspect. We develop the architecture of our platform, including both the frontend and backend components, and demonstrate its effectiveness in identifying potential COVID-19 exposures (as a test case) through a proof-of-concept implementation. We also implement and verify a prototype of the device. Our framework is easily deployable and can be scaled up as needed with the existing infrastructure.
翻译:暂无翻译