This paper introduces the Proof of Sampling (PoSP) protocol, a Nash Equilibrium-based verification mechanism, and its application to decentralized machine learning inference through spML. Our protocol has a pure strategy Nash Equilibrium, compelling rational participants to act honestly. It economically disincentivizes dishonest behavior, making it costly for participants to compromise the network's integrity. In our spML protocol, we apply PoSP to decentralized inference for AI applications via a novel cryptographic protocol. The resulting protocol is much more efficient than zero knowledge proof based approaches. Moreover, we anticipate that the PoSP protocol could be effectively utilized for designing verification mechanisms within Actively Validated Services (AVS) in restaking solutions. We further expect that the PoSP protocol could be applied to a variety of other decentralized applications. Our approach enhances the reliability and efficiency of decentralized systems, paving the way for a new generation of decentralized applications.
翻译:暂无翻译