Scientists often use observational time series data to study complex natural processes, but regression analyses often assume simplistic dynamics. Recent advances in deep learning have yielded startling improvements to the performance of models of complex processes, but deep learning is generally not used for scientific analysis. Here we show that deep learning can be used to analyze complex processes, providing flexible function approximation while preserving interpretability. Our approach relaxes standard simplifying assumptions (e.g., linearity, stationarity, and homoscedasticity) that are implausible for many natural systems and may critically affect the interpretation of data. We evaluate our model on incremental human language processing, a domain with complex continuous dynamics. We demonstrate substantial improvements on behavioral and neuroimaging data, and we show that our model enables discovery of novel patterns in exploratory analyses, controls for diverse confounds in confirmatory analyses, and opens up research questions that are otherwise hard to study.
翻译:科学家们经常使用时间序列数据分析自然过程的复杂性,但回归分析常常假设简单的动态。最近深度学习的进展在复杂过程的模型性能上取得了惊人的改进,但在科学分析中普遍未被应用。本文展示了深度学习可以用于分析复杂过程,提供灵活的函数逼近同时保留可解释性。我们的方法放宽了标准简化假设(例如,线性、稳定性和同方差性),这些假设对于许多自然系统来说是不合理的,并且可以关键性地影响数据解释。我们在增量人类语言处理领域评估了模型,并展示了行为和神经影像数据方面的实质性改进,以及我们的模型使得发现探索性分析中的新模式成为可能,在确认性分析中对多种混淆因素进行控制,并开启了难以研究的研究问题。