In this work, we propose a class of high order semi-Lagrangian scheme for a general consistent BGK model for inert gas mixtures. The proposed scheme not only fulfills indifferentiability principle, but also asymptotic preserving property, which allows us to capture the behaviors of hydrodynamic limit models. We consider two hydrodynamic closure which can be derived from the BGK model at leading order: classical Euler equations for number densities, global velocity and temperature, and a multi-velocities and temperatures Euler system. Numerical simulations are performed to demonstrate indifferentiability principle and asymptotic preserving property of the proposed conservative semi-Lagrangian scheme to the Euler limits.
翻译:在这项工作中,我们为惰性气体混合物的通用一致的BGK模型提出了一类高排序半Lagrangian计划。拟议计划不仅满足了无差别原则,而且满足了无症状保护特性,从而使我们能够捕捉流体动力极限模型的行为。我们考虑从BGK模型中得出两个主要顺序的流体动力封闭:数字密度、全球速度和温度的古典Euler方程式,以及多速度和温度电动系统。进行了数字模拟,以显示无差别原则以及拟议的保守半Lagrangian计划对Euler限制的无症状保护特性。