In this work, we present a new method for 3D face reconstruction from multi-view RGB images. Unlike previous methods which are built upon 3D morphable models (3DMMs) with limited details, our method leverages an implicit representation to encode rich geometric features. Our overall pipeline consists of two major components, including a geometry network, which learns a deformable neural signed distance function (SDF) as the 3D face representation, and a rendering network, which learns to render on-surface points of the neural SDF to match the input images via self-supervised optimization. To handle in-the-wild sparse-view input of the same target with different expressions at test time, we further propose residual latent code to effectively expand the shape space of the learned implicit face representation, as well as a novel view-switch loss to enforce consistency among different views. Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
翻译:在这项工作中,我们用多视图 RGB 图像为 3D 提供了一个新的重建方法。 与以前基于 3D 可变模型( 3DMM ) 和 有限细节的方法不同, 我们的方法利用隐含的表示来编码丰富的几何特征。 我们的整个管道由两个主要部分组成, 包括几何网络, 学习了变形神经信号距离函数( SDF ) 作为 3D 面像代表, 以及 转换网络, 学会通过自我监督优化使神经 SDF 的表面点与输入图像相匹配。 为了在测试时用不同的表达方式处理同一目标的微小视图输入, 我们进一步提议了剩余潜在代码, 以有效扩展所学的隐化面代表的形状空间, 以及新颖的视图转换损失, 以强制不同观点的一致性。 我们关于几个基准数据集的实验结果显示, 我们的方法超越了替代的基线, 并取得了比最新方法更优的面部重建结果 。