Event cameras offer distinct advantages such as low latency, high dynamic range, and efficient motion capture. However, event-to-video reconstruction (E2V), a fundamental event-based vision task, remains challenging, particularly for reconstructing and recovering semantic information. This is primarily due to the nature of the event camera, as it only captures intensity changes, ignoring static objects and backgrounds, resulting in a lack of semantic information in captured event modality. Further, semantic information plays a crucial role in video and frame reconstruction, yet is often overlooked by existing E2V approaches. To bridge this gap, we propose Semantic-E2VID, an E2V framework that explores the missing visual semantic knowledge in event modality and leverages it to enhance event-to-video reconstruction. Specifically, Semantic-E2VID introduces a cross-modal feature alignment (CFA) module to transfer the robust visual semantics from a frame-based vision foundation model, the Segment Anything Model (SAM), to the event encoder, while aligning the high-level features from distinct modalities. To better utilize the learned semantic feature, we further propose a semantic-aware feature fusion (SFF) block to integrate learned semantics in frame modality to form event representations with rich semantics that can be decoded by the event decoder. Further, to facilitate the reconstruction of semantic information, we propose a novel Semantic Perceptual E2V Supervision that helps the model to reconstruct semantic details by leveraging SAM-generated categorical labels. Extensive experiments demonstrate that Semantic-E2VID significantly enhances frame quality, outperforming state-of-the-art E2V methods across multiple benchmarks. The sample code is included in the supplementary material.


翻译:事件相机具有低延迟、高动态范围及高效运动捕捉等独特优势。然而,事件到视频重建(E2V)作为基于事件视觉的基础任务,在重建与恢复语义信息方面仍面临挑战。这主要源于事件相机的本质特性:其仅捕捉强度变化,忽略静态物体与背景,导致捕获的事件模态缺乏语义信息。此外,语义信息在视频与帧重建中至关重要,但现有E2V方法常忽视这一点。为弥补这一不足,我们提出Semantic-E2VID——一种探索事件模态中缺失视觉语义知识并利用其增强事件到视频重建的E2V框架。具体而言,Semantic-E2VID引入跨模态特征对齐(CFA)模块,将基于帧的视觉基础模型Segment Anything Model(SAM)的鲁棒视觉语义迁移至事件编码器,同时对齐来自不同模态的高级特征。为更好利用学习到的语义特征,我们进一步提出语义感知特征融合(SFF)模块,将帧模态中学习到的语义信息整合为具有丰富语义的事件表征,供事件解码器解码。此外,为促进语义信息重建,我们提出新颖的语义感知E2V监督机制,通过利用SAM生成的类别标签帮助模型重建语义细节。大量实验表明,Semantic-E2VID显著提升了帧质量,在多个基准测试中优于当前最先进的E2V方法。示例代码已包含在补充材料中。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
27+阅读 · 2021年11月11日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
29+阅读 · 2018年4月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员