At IPEC 2020, Bergougnoux, Bonnet, Brettell, and Kwon showed that a number of problems related to the classic Feedback Vertex Set (FVS) problem do not admit a $2^{o(k \log k)} \cdot n^{\mathcal{O}(1)}$-time algorithm on graphs of treewidth at most $k$, assuming the Exponential Time Hypothesis. This contrasts with the $3^{k} \cdot k^{\mathcal{O}(1)} \cdot n$-time algorithm for FVS using the Cut&Count technique. During their live talk at IPEC 2020, Bergougnoux et al.~posed a number of open questions, which we answer in this work. - Subset Even Cycle Transversal, Subset Odd Cycle Transversal, Subset Feedback Vertex Set can be solved in time $2^{\mathcal{O}(k \log k)} \cdot n$ in graphs of treewidth at most $k$. This matches a lower bound for Even Cycle Transversal of Bergougnoux et al.~and improves the polynomial factor in some of their upper bounds. - Subset Feedback Vertex Set and Node Multiway Cut can be solved in time $2^{\mathcal{O}(k \log k)} \cdot n$, if the input graph is given as a clique-width expression of size $n$ and width $k$. - Odd Cycle Transversal can be solved in time $4^k \cdot k^{\mathcal{O}(1)} \cdot n$ if the input graph is given as a clique-width expression of size $n$ and width $k$. Furthermore, the existence of a constant $\varepsilon > 0$ and an algorithm performing this task in time $(4-\varepsilon)^k \cdot n^{\mathcal{O}(1)}$ would contradict the Strong Exponential Time Hypothesis.
翻译:在 IPEC 2020 、 Bergougnoux、 Bonnet、 Brettell 和 Kwon 中, 与经典反馈 Vertex Set (FVS) 问题相关的若干问题无法接受 $2 o( k\log k)\ cdt n\ mathcal{O} 最多以美元计的树枝图上的美元算法 。 假设是指数化时间周期转换, Subset Vertex Set 将用 $3\ kk} kdockal{O} (1)\\ cdo美元 用于使用 Cut & Count 技术的 FVS nd 美元算法。 在IMEC 2020 的现场谈话中, Bergougnoux et al. 提供了一些我们在此工作中回答的开放问题 。