The reload cost refers to the cost that occurs along a path on an edge-colored graph when it traverses an internal vertex between two edges of different colors. Galbiati et al.[1] introduced the Minimum Reload Cost Cycle Cover problem, which is to find a set of vertex-disjoint cycles spanning all vertices with minimum reload cost. They proved that this problem is strongly NP-hard and not approximable within $1/\epsilon$ for any $\epsilon > 0$ even when the number of colors is 2, the reload costs are symmetric and satisfy the triangle inequality. In this paper, we study this problem in complete graphs having equitable or nearly equitable 2-edge-colorings, which are edge-colorings with two colors such that for each vertex $v \in V(G)$, $||c_1(v)| -|c_2(v)|| \leq 1$ or $||c_1(v)| -|c_2(v)|| \leq 2$, respectively, where $c_i(v)$ is the set of edges with color $i$ that is incident to $v$. We prove that except possibly on complete graphs with fewer than 13 vertices, the minimum reload cost is zero on complete graphs with nearly equitable 2-edge-colorings by proving the existence of a monochromatic cycle cover. Furthermore, we provide a polynomial-time algorithm that constructs a monochromatic cycle cover in complete graphs with an equitable 2-edge-coloring except possibly in a complete graph with four vertices. Our algorithm also finds a monochromatic cycle cover in complete graphs with a nearly equitable 2-edge-coloring except some special cases.
翻译:重新load 成本是指在边缘颜色图形上沿一条路径运行的成本, 当它跨过两个不同颜色边缘之间的内部顶点时, 重置成本周期覆盖问题。 Galbiati 等人 [1] 引入了最小重新装入成本周期封面问题, 即找到一组覆盖所有顶端的顶端分解周期, 以最小重新装入成本覆盖所有顶端。 它们证明, 这个问题在$\\\ epsilon > 0美元范围内是强烈的 NP- hard, 并且不能在 $\\\ e- lical_ licalal_ pal- licalal $ > 的路径上匹配 。 即使在颜色数量为 2 和 local- lical_ lical_ lical_ lical_ liveral ral $ 2\\\\\\\\ liveral liveral_ liver lex a\ lical_ liver lexnations a cal liverations a liver, liver ex ex liver ex ex ex ex ex ex ex level ex liver ex ex ex ex a_ a_ a_ a_ a_ liver liver liver ex liver liver ex ex ex ex ex ex ex ex ex lex ex ex lex lex ex lex lise le le lex lecal lex lex ex le le le li li list list li li li li li li li li le le li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li