We study the cone of completely positive (cp) matrices for the first interesting case $n = 5$. This is a semialgebraic set, which means that the polynomial equalities and inequlities that define its boundary can be derived. We characterize the different loci of this boundary and we examine the two open sets with cp-rank 5 or 6. A numerical algorithm is presented that is fast and able to compute the cp-factorization even for matrices in the boundary. With our results, many new example cases can be produced and several insightful numerical experiments are performed that illustrate the difficulty of the cp-factorization problem.


翻译:我们研究第一个有趣的案例的完全正(cp)矩阵的锥体。这是一个半热镜组,这意味着可以得出界定其边界的多元等同和不平等。我们对这一边界的不同地点进行特征分析,并以5或6分级对两个开放的集合进行检查。一个数字算法是快速的,甚至能够计算边界矩阵的 cp-因子化。有了我们的结果,可以产生许多新的例子,并进行若干有见地的数字实验,以说明Cp-因子化问题的难度。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
42+阅读 · 2021年4月2日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员