We typically construct optimal designs based on a single objective function. To better capture the breadth of an experiment's goals, we could instead construct a multiple objective optimal design based on multiple objective functions. While algorithms have been developed to find multi-objective optimal designs (e.g. efficiency-constrained and maximin optimal designs), it is far less clear how to verify the optimality of a solution obtained from an algorithm. In this paper, we provide theoretical results characterizing optimality for efficiency-constrained and maximin optimal designs on a discrete design space. We demonstrate how to use our results in conjunction with linear programming algorithms to verify optimality.
翻译:我们通常在单一客观功能的基础上构建最佳设计。为了更好地捕捉实验目标的广度,我们可以选择在多重客观功能的基础上构建一个多重客观最佳设计。虽然已经开发了算法来寻找多目标最佳设计(例如效率限制和最大化最佳设计),但如何验证从算法中获得的解决方案的最佳性却远非十分清楚。在本文中,我们提供了理论结果,说明效率限制和最大化设计在离散设计空间上的最佳设计的最佳性。我们展示了如何与线性编程算法一起使用我们的结果来验证最佳性。</s>