We study a worst-case scenario in generalization: Out-of-domain generalization from a single source. The goal is to learn a robust model from a single source and expect it to generalize over many unknown distributions. This challenging problem has been seldom investigated while existing solutions suffer from various limitations such as the ignorance of uncertainty assessment and label augmentation. In this paper, we propose uncertainty-guided domain generalization to tackle the aforementioned limitations. The key idea is to augment the source capacity in both feature and label spaces, while the augmentation is guided by uncertainty assessment. To the best of our knowledge, this is the first work to (1) quantify the generalization uncertainty from a single source and (2) leverage it to guide both feature and label augmentation for robust generalization. The model training and deployment are effectively organized in a Bayesian meta-learning framework. We conduct extensive comparisons and ablation study to validate our approach. The results prove our superior performance in a wide scope of tasks including image classification, semantic segmentation, text classification, and speech recognition.
翻译:我们从一个来源研究一种最坏的情况:从一个来源来研究一种最坏的情况假设:从一个来源来研究一个强大的模型,并期望它能对许多未知的分布进行概括。这个具有挑战性的问题很少被调查,而现有的解决办法却受到各种限制,例如对不确定性评估和标签扩增的无知等的制约。在本文中,我们提出以不确定性为指南的域的概括,以解决上述限制。关键的想法是提高特性和标签空间的源能力,而扩增则以不确定性评估为指南。根据我们的知识,这是(1)从一个来源量化一般化不确定性的首项工作,(2)利用它来引导特性和标签的增强,以稳健的概括化。模型培训和部署工作在巴伊西亚的元学习框架内有效地组织起来。我们进行了广泛的比较和缩略研究,以验证我们的方法。结果证明我们在广泛的任务范围内的优异性表现,包括图像分类、语义分割、文本分类和语音识别。