The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. Here we follow earlier approaches which fully exploit the normal Hilbert module property of the time domain. The key point is to build the Gramian-Cram\'er representation as an isomorphic mapping from the modular spectral domain to the modular time domain. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cram\'er-Karhunen-Lo\`eve decomposition and harmonic functional principal component analysis, which are established without relying on additional assumptions.
翻译:位于可分离的Hilbert空间的薄弱固定过程的光谱理论在过去十年中再次引起人们的兴趣。 我们在此遵循早期的做法,充分利用了时间域正常的Hilbert模块属性。 关键点是将Gramian-Cram\'er的表示法构建成从模块光谱域到模块时间域的无定型映射。 我们还讨论一般的Bochner定理, 并提供关于低位不变量线性过滤器的构成和反向的有用结果。 最后, 我们得出Cram\'er-Karhunen- Lo ⁇ ⁇ éeve 分解和调合功能主元组成部分分析, 这些分析是在不依赖其他假设的情况下建立的。