We study generalizations of online bipartite matching in which each arriving vertex (customer) views a ranked list of offline vertices (products) and matches to (purchases) the first one they deem acceptable. The number of products that the customer has patience to view can be stochastic and dependent on the products seen. We develop a framework that views the interaction with each customer as an abstract resource consumption process, and derive new results for these online matching problems under the adversarial, non-stationary, and IID arrival models, assuming we can (approximately) solve the product ranking problem for each single customer. To that end, we show new results for product ranking under two cascade-click models: an optimal algorithm for item-dependent hazard rates, and a 1/2-approximate algorithm for general item-independent patience distributions. We also present a constant-factor 0.027-approximate algorithm in a new model where items are not initially available and arrive over time. Finally, we present three negative results of interest: one formalizing the notion of a stochasticity gap exhibited by existing approaches to this problem, an example showing the analysis of SimpleGreedy in existing work to be tight, and another one for the single-customer problem in which any constant-factor approximation is impossible when compared to a benchmark that knows the realization of the patience in advance. A corollary of this last result is that for general single-item online accept/reject problems with IID arrivals, any constant-factor approximation is impossible if the number of arrivals is unknown.
翻译:我们研究在线双面匹配的概括化,每个到达的顶端(客户)都会在其中看到一个分级的离线脊椎(产品)列表,并匹配他们认为可接受的第一个(购买)列表。客户有耐心看的产品数量可以是随机的,取决于所看到的产品数量。我们开发了一个框架,将与每个客户的互动视为一个抽象的资源消耗过程,并在对抗性、非静止和IID到达模式下为这些在线匹配问题得出新的结果,假设我们能够(约)解决每个客户的产品排名问题。为此,我们展示了两个级联点击模式下产品排名的新结果:一个取决于项目的危险率的最佳算法,一个取决于一般项目耐性分布的1.5个近似值算法。我们还在一个新的模型中提出一个常数 0.027 - 近似的算法,如果项目最初没有可用,而且到达时间不长。最后,我们提出三种负面的到达模式:一个正式的关于现有方法显示的对每个客户产品排名差距的概念,在两个级联式模式下,我们展示新的产品排序结果是新的:一个根据项目依赖风险率进行最佳算法的计算,一个不变的,一个在当前的直径直线上,一个对一个结果,一个结果显示一个不变的直线上的结果是无法实现。在目前的一个结果,一个对一个不变的直观的对一个结果,一个对一个结果,一个结果,一个是,一个是无法实现。一个是,一个是,一个是,一个是,一个是无法实现。