Generative modeling of 3D scenes is a crucial topic for aiding mobile robots to improve unreliable observations. However, despite the rapid progress in the natural image domain, building generative models is still challenging for 3D data, such as point clouds. Most existing studies on point clouds have focused on small and uniform-density data. In contrast, 3D LiDAR point clouds widely used in mobile robots are non-trivial to be handled because of the large number of points and varying-density. To circumvent this issue, 3D-to-2D projected representation such as a cylindrical depth map has been studied in existing LiDAR processing tasks but susceptible to discrete lossy pixels caused by failures of laser reflection. This paper proposes a novel framework based on generative adversarial networks to synthesize realistic LiDAR data as an improved 2D representation. Our generative architectures are designed to learn a distribution of inverse depth maps and simultaneously simulate the lossy pixels, which enables us to decompose an underlying smooth geometry and the corresponding uncertainty of laser reflection. To simulate the lossy pixels, we propose a differentiable framework to learn to produce sample-dependent binary masks using the Gumbel-Sigmoid reparametrization trick. We demonstrate the effectiveness of our approach in synthesis and reconstruction tasks on two LiDAR datasets. We further showcase potential applications by recovering various corruptions in LiDAR data.


翻译:3D 生成场景模型是帮助移动机器人改进不可靠的观测的一个关键主题。然而,尽管在自然图像领域取得了快速进展,但对于3D数据(如点云)而言,建立基因模型仍然具有挑战性。关于点云的现有研究大多侧重于小型和统一密度数据。相比之下,在移动机器人中广泛使用的3D LiDAR点云是非三角云,因为有大量的点数和不同密度而需要处理。为绕过这一问题,3D至2D预测的表示方式,如圆柱形深度图已经在现有LIDAR处理任务中研究过,但很容易因激光反射失败而产生离散的损耗象素。本文提出了一个基于基因性对抗网络的新框架,将现实的LDAR数据合成为改进的 2D 表示方式。我们的基因结构旨在学习深度地图的分布,同时模拟丢失像素,从而使我们能够解析一个基础的平滑动的几何测深色深度图和相应的激光反射镜的不确定性。为了模拟损失情况,我们用激光反射镜模型模拟了损失图解的模型模型模型的模型,我们提出一个不同的样样样面数据重建框架。我们提出一个在GISD 25D 的模型的模型中可以重新研究中学习了两部的模型的模型的模型的模型的模型的模型,以研究。

1
下载
关闭预览

相关内容

元学习与图神经网络逻辑推导,55页ppt
专知会员服务
129+阅读 · 2020年4月25日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
“CVPR 2020 接受论文列表 1470篇论文都在这了
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2021年3月10日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关VIP内容
相关资讯
Top
微信扫码咨询专知VIP会员