Let $\mathbb F_q$ be a finite field with $q$ elements, where $q$ is a power of an odd prime $p$. In this paper we associate circulant matrices and quadratic forms with the Artin-Schreier curve $y^q - y= x \cdot F(x) - \lambda,$ where $F(x)$ is a $\mathbb F_q$-linearized polynomial and $\lambda \in \mathbb F_q$. Our results provide a characterization of the number of affine rational points of this curve in the extension $\mathbb F_{q^r}$ of $\mathbb F_q$, for $\gcd(q,r)=1$. In the case $F(x) = x^{q^i}-x$ we give a complete description of the number of affine rational points in terms of Legendre symbols and quadratic characters.
翻译:$mathbb F_ q$ 是一个有 $q元元素的限定字段, $q$是奇质美元的力量。 在本文中, 我们将circurant 矩阵和二次曲线形式与Artin- Schreier 曲线 $yq - y= x\ cdot F (x) -\ cdot F (x) -\ lambda $F (x) 是 $\ mathb F_ q- 线性多元价和 $\ lambda\ in\ mathb F_ q $。 我们的结果提供了扩展 $\ mathb F* 和 quandric 字符中此曲线的直角合理点数的定性, $\ mathb F_ q_ q$, $\ gcd (q, r) = $. 美元。 在这样的例子中, $F (x) = x = xq ⁇ i) - x 中, 我们完整描述了图示符号和二次字符中的近点的合理点数 。