Image synthesis and image recognition have witnessed remarkable progress, but often at the expense of computationally expensive training and inference. Learning lightweight yet expressive deep model has emerged as an important and interesting direction. Inspired by the well-known split-transform-aggregate design heuristic in the Inception building block, this paper proposes a Skip-Layer Inception Module (SLIM) that facilitates efficient learning of image synthesis models, and a same-layer variant (dubbed as SLIM too) as a stronger alternative to the well-known ResNeXts for image recognition. In SLIM, the input feature map is first split into a number of groups (e.g., 4).Each group is then transformed to a latent style vector(via channel-wise attention) and a latent spatial mask (via spatial attention). The learned latent masks and latent style vectors are aggregated to modulate the target feature map. For generative learning, SLIM is built on a recently proposed lightweight Generative Adversarial Networks (i.e., FastGANs) which present a skip-layer excitation(SLE) module. For few-shot image synthesis tasks, the proposed SLIM achieves better performance than the SLE work and other related methods. For one-shot image synthesis tasks, it shows stronger capability of preserving images structures than prior arts such as the SinGANs. For image classification tasks, the proposed SLIM is used as a drop-in replacement for convolution layers in ResNets (resulting in ResNeXt-like models) and achieves better accuracy in theImageNet-1000 dataset, with significantly smaller model complexity


翻译:图像合成和图像识别取得了显著的进展,但往往以计算成本昂贵的培训和推断为代价。学习轻量但表现深刻的模型已经成为一个重要和有趣的方向。在受感应建筑块中众所周知的分变式聚合设计超常性激素的启发下,本文件提议了一个跳过-拉叶感应模块(SLIM),该模块有助于高效学习图像合成模型,以及一个同级变量(与 SLIM 一同浸泡),作为人们熟知的 ResNeX 分类识别图像的更强替代品。在 SLIM 中,输入特征图首先分为若干组(例如, 4 ) 。然后,Each 组转换为潜伏风格矢量式( 通过频道关注) 和潜伏空间遮罩(通过空间关注 ) 。 学到的潜伏遮罩和潜伏风格矢量矢量矢量矩阵将组合组合成一个比S-LEAR 图像更强的图像替换模型(例如, FastGANs ) 。 SL 的拟议SL 将S- hold 的S- relishal imal relishall 的图像转换模型显示一个比SL 之前的SL 相关的SL 格式化模型更强的SL) 。

0
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员