This paper presents a real-time 3D mapping framework based on global matching cost minimization and LiDAR-IMU tight coupling. The proposed framework comprises a preprocessing module and three estimation modules: odometry estimation, local mapping, and global mapping, which are all based on the tight coupling of the GPU-accelerated voxelized GICP matching cost factor and the IMU preintegration factor. The odometry estimation module employs a keyframe-based fixed-lag smoothing approach for efficient and low-drift trajectory estimation, with a bounded computation cost. The global mapping module constructs a factor graph that minimizes the global registration error over the entire map with the support of IMU constraints, ensuring robust optimization in feature-less environments. The evaluation results on the Newer College dataset and KAIST urban dataset show that the proposed framework enables accurate and robust localization and mapping in challenging environments.
翻译:本文件介绍了基于全球匹配成本最小化和LiDAR-IMU紧密结合的实时3D绘图框架,拟议框架包括一个预处理模块和三个估算模块:odoratimation估计、当地制图和全球制图,所有这些都基于GPU加速氧化的GICP匹配成本系数和IMU预整合系数的紧密结合。odorization估计模块采用基于关键框架的固定标签平滑法,以高效和低轨迹估算,并附带一个封闭计算成本。全球绘图模块在IMU的限制支持下,构建了一个要素图,以最大限度地减少整个地图上的全球登记错误,确保在无地物环境中进行强有力的优化。新学院数据集和KAIST城市数据集的评价结果显示,拟议框架有助于在具有挑战性的环境中准确和稳健的定位和绘图。