Shikaku is a pencil puzzle consisting of a rectangular grid, with some cells containing a number. The player has to partition the grid into rectangles such that each rectangle contains exactly one number equal to the area of that rectangle. In this paper, we propose two physical zero-knowledge proof protocols for Shikaku using a deck of playing cards, which allow a prover to physically show that he/she knows a solution of the puzzle without revealing it. Most importantly, in our second protocol we develop a general technique to physically verify a rectangle-shaped area with a certain size in a rectangular grid, which can be used to verify other puzzles with similar constraints.
翻译:Shikaku是一个由矩形网格组成的铅笔拼图, 包含一些包含数字的单元格。 玩家必须将网格分割成矩形, 这样每个矩形的矩形都包含一个与矩形面积相等的精确数字。 在本文中, 我们提议了两套实际的零知识验证程序, 用于 Shikaku 使用一张扑克牌牌, 使一个证明人能够实际显示他/ 她知道谜题的解答, 而没有透露它。 最重要的是, 在我们的第二个协议中, 我们开发了一种一般技术, 来实际验证一个矩形形形形形形区域, 这个区域在矩形网格中具有一定的大小, 可以用来验证具有类似限制的其他谜题 。