Researchers are now using deep learning models to explore the emergence of language in various language games, where simulated agents interact and develop an emergent language to solve a task. Although it is quite intuitive that different types of language games posing different communicative challenges might require emergent languages which encode different levels of information, there is no existing work exploring the expressivity of the emergent languages. In this work, we propose a definition of partial order between expressivity based on the generalisation performance across different language games. We also validate the hypothesis that expressivity of emergent languages is a trade-off between the complexity and unpredictability of the context those languages are used in. Our second novel contribution is introducing contrastive loss into the implementation of referential games. We show that using our contrastive loss alleviates the collapse of message types seen using standard referential loss functions.
翻译:目前,研究人员正在使用深层次学习模型来探索各种语言游戏中语言的出现,模拟剂在其中相互作用,并开发一种新兴语言,以解决一项任务。虽然不同类型语言游戏构成不同的交流挑战,可能要求新出现语言对不同层次的信息进行编码,但目前没有研究新出现语言的表达性的现有工作。在这项工作中,我们根据不同语言游戏的通用性表现,提出了表达性之间的部分顺序定义。我们还验证了一种假设,即新出现语言的表达性是这些语言所使用背景的复杂性和不可预测性之间的权衡。我们的第二个新贡献是给实施优惠游戏带来对比性损失。我们表明,利用我们的对比性损失减轻了使用标准偏差损失功能看待的信息类型的崩溃。