This paper presents a simple yet effective method for anomaly detection. The main idea is to learn small perturbations to perturb normal data and learn a classifier to classify the normal data and the perturbed data into two different classes. The perturbator and classifier are jointly learned using deep neural networks. Importantly, the perturbations should be as small as possible but the classifier is still able to recognize the perturbed data from unperturbed data. Therefore, the perturbed data are regarded as abnormal data and the classifier provides a decision boundary between the normal data and abnormal data, although the training data do not include any abnormal data. Compared with the state-of-the-art of anomaly detection, our method does not require any assumption about the shape (e.g. hypersphere) of the decision boundary and has fewer hyper-parameters to determine. Empirical studies on benchmark datasets verify the effectiveness and superiority of our method.
翻译:本文为异常点检测提供了一个简单而有效的方法。 主要的想法是学习小扰动以干扰正常数据,并学习一个分类器将正常数据和受扰动数据分为两个不同类别。 扰动器和分类器是使用深神经网络共同学习的。 重要的是, 扰动器应该尽可能小, 但分类器仍然能够识别未扰动数据中受扰动的数据。 因此, 被扰动的数据被视为异常数据, 分类器提供了正常数据与异常数据之间的决定界限, 尽管培训数据并不包含任何异常数据。 与异常点检测的状态相比, 我们的方法并不要求对决定边界的形状( 如超光谱) 作任何假设, 并且没有多少高参数来决定。 基准数据集的“ 经验” 研究证实了我们方法的有效性和优越性。