Current methods for clustering nodes over time in a brain network are determined by cross-dependence measures, which are computed from the entire range of values of the electroencephalogram (EEG) signals, from low to high amplitudes. We here developed the Club Exco method for clustering brain communities that exhibit synchronized extreme behaviors. To cluster multi-channel EEG data, Club-Exco uses a spherical $k$-means procedure applied to the ``pseudo-angles,'' derived from extreme absolute amplitudes of EEG signals. With this approach, a cluster center is considered an ``extremal prototype,'' revealing a community of EEG nodes sharing the same extreme behavior, a feature that traditional methods fail to identify. Hence, Club Exco serves as an exploratory tool to classify EEG channels into mutually asymptotically dependent or asymptotically independent groups. It provides insights into how the brain network organizes itself during an extreme event (e.g., an epileptic seizure) in contrast to a baseline state. We apply the Club Exco method to investigate temporal differences in EEG brain connectivity networks of a patient diagnosed with epilepsy, a chronic neurological disorder affecting more than 50 million people globally. Our extreme-value method reveals substantial differences in alpha (8--12 Hertz) oscillations across the brain network compared to coherence-based methods.
翻译:长期在大脑网络中聚集节点的当前方法由交叉依赖措施决定,从电子脑图信号的全值范围,从低到高振度。 我们在这里开发了俱乐部Exco 方法, 将显示同步极端行为的大脑群聚起来。 对于多通道 EEG 数据, Club-Exco 使用一个适用于“ 假设- 角” 的球状美元- 比例程序, 来源于极绝对的 EEEG 信号。 采用这种方法, 集群中心被视为“ 极端原型 ”, 揭示一个有着相同极端行为的 EEEG 节点社区, 传统方法无法识别这一特征。 因此, Club- Exco 作为一种探索工具, 将EEEG 渠道分类成一个非同步依赖性或无干扰性独立的群体。 它提供了对大脑网络在极端事件( 例如, 癫痫抓获) 中是如何组织起来的。 我们使用Club Exco 方法, 来调查我们50万个神经网络中长期性差异, 。