The training of neural networks with Differentially Private Stochastic Gradient Descent offers formal Differential Privacy guarantees but introduces accuracy trade-offs. In this work, we propose to alleviate these trade-offs in residual networks with Group Normalisation through a simple architectural modification termed ScaleNorm by which an additional normalisation layer is introduced after the residual block's addition operation. Our method allows us to further improve on the recently reported state-of-the art on CIFAR-10, achieving a top-1 accuracy of 82.5% ({\epsilon}=8.0) when trained from scratch.


翻译:在这项工作中,我们建议通过简单的建筑改造,即ScaleNorm,在剩余区块新增操作后引入额外的正常化层。我们的方法使我们能够进一步改进最近报道的关于CIFAR-10的最新技术,从零开始培训时达到最高至最高至最高达82.5%的精确度。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员