In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for the use of adiabatic computing, offer a tantalising route towards even lower energy consumption, especially when combined with `memimpedace' elements. Here, we present an artificial neuron featuring adiabatic synapse capacitors to produce membrane potentials for the somas of neurons; the latter implemented via dynamic latched comparators augmented with Resistive Random-Access Memory (RRAM) devices. Our initial 4-bit adiabatic capacitive neuron proof-of-concept example shows 90% synaptic energy saving. At 4 synapses/soma we already witness an overall 35% energy reduction. Furthermore, the impact of process and temperature on the 4-bit adiabatic synapse shows a maximum energy variation of 30% at 100 degree Celsius across the corners without any functionality loss. Finally, the efficacy of our adiabatic approach to ANN is tested for 512 & 1024 synapse/neuron for worst and best case synapse loading conditions and variable equalising capacitance's quantifying the expected trade-off between equalisation capacitance and range of optimal power-clock frequencies vs. loading (i.e. the percentage of active synapses).
翻译:在追求低电量的过程中,生物启发的计算,包括内向和以内向为基础的人工神经网络(ANN),一直是神经变异计算硬件应用日益关注的焦点。还有一步,再生能力神经神经网络,它需要使用异性计算,它提供了一条通向更低能源消耗的诱人之路,特别是在结合“抑制”元素的情况下。在这里,我们展示了一种人工神经神经元,其特征是诊断性神经突触电动电容器,以产生神经细胞的膜潜力;后者通过动态拉链参照器实施,通过耐性随机失常内存(RRAM)装置加以扩大。我们最初的4位异性神经12神经证据概念示例显示了90%的超低能量消耗。在4个神经神经/症状中,我们目睹了35 %的降能总量。此外,过程和温度对4位神经神经变异异变的频率范围的影响,以及A值变异性性变性变异性变性变异性变异性值在10度中,最后的能量变异性性性变性性性性性性性性性性反应(A-25级变性变性变性变性变性变性变性变性变性变性变性变性变性),在10级变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性性能中, 性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变后性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变后性变后性变性变性变性