Open-world novelty occurs when the rules of an environment can change abruptly, such as when a game player encounters "house rules". To address open-world novelty, game playing agents must be able to detect when novelty is injected, and to quickly adapt to the new rules. We propose a model-based reinforcement learning approach where game state and rules are represented as knowledge graphs. The knowledge graph representation of the state and rules allows novelty to be detected as changes in the knowledge graph, assists with the training of deep reinforcement learners, and enables imagination-based re-training where the agent uses the knowledge graph to perform look-ahead.


翻译:当环境规则突然改变时,例如游戏玩家遇到“内部规则”时,就会出现开放世界的新规则。为了解决开放世界的新规则问题,游戏玩家必须能够发现新规则注入时,并能迅速适应新规则。我们提出了一个基于模型的强化学习方法,其中游戏状态和规则以知识图表形式出现。 国家和规则的知识图显示允许将新规则作为知识图的变化被检测出来,帮助培训深层强化学习者,并在游戏玩家使用知识图进行外观分析时,进行基于想象的再培训。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
4+阅读 · 2018年10月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
q-Space Novelty Detection with Variational Autoencoders
Arxiv
4+阅读 · 2018年10月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员