Current video/action understanding systems have demonstrated impressive performance on large recognition tasks. However, they might be limiting themselves to learning to recognize spatiotemporal patterns, rather than attempting to thoroughly understand the actions. To spur progress in the direction of a truer, deeper understanding of videos, we introduce the task of win-fail action recognition -- differentiating between successful and failed attempts at various activities. We introduce a first of its kind paired win-fail action understanding dataset with samples from the following domains: "General Stunts," "Internet Wins-Fails," "Trick Shots," and "Party Games." Unlike existing action recognition datasets, intra-class variation is high making the task challenging, yet feasible. We systematically analyze the characteristics of the win-fail task/dataset with prototypical action recognition networks and a novel video retrieval task. While current action recognition methods work well on our task/dataset, they still leave a large gap to achieve high performance. We hope to motivate more work towards the true understanding of actions/videos. Dataset will be available from https://github.com/ParitoshParmar/Win-Fail-Action-Recognition.


翻译:当前的视频/行动理解系统在大型识别任务上表现出了令人印象深刻的成绩。 但是,它们可能仅限于学习识别时空模式,而不是试图彻底理解行动。 为了推动在真实、更深入地理解视频的方向上取得进展, 我们引入了双败行动识别任务 -- -- 将各种活动的成功和失败尝试区分开来。 我们引入了同类的首个双赢行动理解数据集, 包括来自以下领域的样本: " 将军 " 、 " Internet Wins-fails " 、 " Trick shots " 和 " Party Changes " 。 与现有的行动识别数据集不同, 阶级内部差异使得任务具有挑战性, 但却是可行的。 我们系统地分析了双败任务/数据设置的特点, 以原型行动识别网络和新的视频检索任务。 虽然当前行动识别方法在任务/数据设置上效果良好, 但仍留下很大的空白以达到高性。 我们希望激励更多工作, 以真正理解行动/视频。 数据设置将来自 https://github.com/Partosh/Regmar-Faction.

0
下载
关闭预览

相关内容

【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Quo Vadis, Skeleton Action Recognition ?
Arxiv
0+阅读 · 2021年4月7日
Equalization Loss for Long-Tailed Object Recognition
Arxiv
5+阅读 · 2020年4月14日
Arxiv
5+阅读 · 2020年3月17日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员