Directed acyclic graphs (DAGs) are commonly used in statistics as models, such as Bayesian networks. In this article, we propose a stochastic block model for data that are DAGs. Two main features of this model are the incorporation of the topological ordering of nodes as a parameter, and the use of the Pitman-Yor process as the prior for the allocation vector. In the resultant Markov chain Monte Carlo sampler, not only are the topological ordering and the number of groups inferred, but a model selection step is also included to select between the two regimes of the Pitman-Yor process. The model and the sampler are applied to two citation networks.


翻译:直接环形图(DAGs)通常作为模型在统计中使用,例如贝耶斯网络。在本条中,我们为数据是DAG提出一个随机区块模型。这一模型的两个主要特征是将节点的地形顺序作为参数,将Pitman-Yor过程作为分配矢量的前面使用。在由此生成的Markov链Monte Carlo取样器中,不仅有地形顺序和推断的组数,而且还包括一个示范选择步骤,以便在Pitman-Yor过程的两个制度之间作出选择。模型和取样器适用于两个引用网络。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员