Beyond representing the external world, humans also represent their own cognitive processes. In the context of perception, this metacognition helps us identify unreliable percepts, such as when we recognize that we are seeing an illusion. Here we propose MetaGen, a model for the unsupervised learning of metacognition. In MetaGen, metacognition is expressed as a generative model of how a perceptual system produces noisy percepts. Using basic principles of how the world works (such as object permanence, part of infants' core knowledge), MetaGen jointly infers the objects in the world causing the percepts and a representation of its own perceptual system. MetaGen can then use this metacognition to infer which objects are actually present in the world. On simulated data, we find that MetaGen quickly learns a metacognition and improves overall accuracy, outperforming models that lack a metacognition.


翻译:除了代表外部世界之外,人类还代表着他们自己的认知过程。在认知方面,这种元认知有助于我们识别不可靠的概念,例如当我们认识到我们看到幻觉时。在这里,我们提议MetaGen,一个不受监督的元认知学习模式。在MetaGen,元认知表现为一种感知系统如何产生噪音概念的遗传模型。使用世界运作方式的基本原则(如物体永久性、婴儿核心知识的一部分),MetaGen共同推断出世界上产生感知和自身感知系统代表的物体。MetaGen随后可以使用这种元认知来推断天体实际存在于世界上。在模拟数据中,我们发现MetaGen迅速学习了元认知,提高了总体精确度,超过了缺乏元认知的模型。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
113+阅读 · 2020年10月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
21+阅读 · 2020年10月11日
Polarity Loss for Zero-shot Object Detection
Arxiv
3+阅读 · 2018年11月22日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Arxiv
21+阅读 · 2020年10月11日
Polarity Loss for Zero-shot Object Detection
Arxiv
3+阅读 · 2018年11月22日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员