This paper seeks to build on the extensive connections that have arisen between automata theory, combinatorics on words, fractal geometry, and model theory. Results in this paper establish a characterization for the behavior of the fractal geometry of "$k$-automatic" sets, subsets of $[0,1]^d$ that are recognized by B\"uchi automata. The primary tools for building this characterization include the entropy of a regular language and the digraph structure of an automaton. Via an analysis of the strongly connected components of such a structure, we give an algorithmic description of the box-counting dimension, Hausdorff dimension, and Hausdorff measure of the corresponding subset of the unit box. Applications to definability in model-theoretic expansions of the real additive group are laid out as well.
翻译:本文试图在自成一体的理论、单词、分形几何和模型理论的组合法之间产生的广泛联系的基础上发展。 本文的结果为“ $k$- 自动” 集的分形几何行为定性, 这是B\\' uchi automata所承认的 $0, 1 ⁇ d$ 子集。 构建这一特性的主要工具包括普通语言的酶和自成一体的自成体结构的分形结构。 通过分析这种结构紧密相连的构件, 我们从逻辑上描述框计数的维度、 Hausdorff 维度和单位盒相应子集的Hausdorff 度度量。 实际添加组的模型- 理论扩展中的可定义性应用也被推出 。