Remote sensing image segmentation is a specific task of remote sensing image interpretation. A good remote sensing image segmentation algorithm can provide guidance for environmental protection, agricultural production, and urban construction. This paper proposes a new type of UNet image segmentation algorithm based on channel self attention mechanism and residual connection called . In my experiment, the new network model improved mIOU by 2.48% compared to traditional UNet on the FoodNet dataset. The image segmentation algorithm proposed in this article enhances the internal connections between different items in the image, thus achieving better segmentation results for remote sensing images with occlusion.


翻译:遥感图像分割是遥感图像解译的一项特定任务。良好的遥感图像分割算法可以为环境保护、农业生产和城市建设提供指导。本文提出了一种基于通道 self attention 机制和残差连接的新型 UNet 图像分割算法称为 Deep Attention UNet。在我的实验中,与传统的 UNet 相比,新的网络模型在 FoodNet 数据集上将 mIOU 提高了 2.48%。本文提出的图像分割算法增强了图像中不同项之间的内部连接,从而实现了对具有遮挡的遥感图像更好的分割结果。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
12+阅读 · 2021年12月9日
专知会员服务
37+阅读 · 2021年5月15日
【ECCV2020】OCRNet化解语义分割上下文信息缺失难题
专知会员服务
17+阅读 · 2020年8月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月6日
Arxiv
58+阅读 · 2021年11月15日
VIP会员
相关资讯
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员