We explore Few-Shot Learning (FSL) for Relation Classification (RC). Focusing on the realistic scenario of FSL, in which a test instance might not belong to any of the target categories (none-of-the-above, aka NOTA), we first revisit the recent popular dataset structure for FSL, pointing out its unrealistic data distribution. To remedy this, we propose a novel methodology for deriving more realistic few-shot test data from available datasets for supervised RC, and apply it to the TACRED dataset. This yields a new challenging benchmark for FSL RC, on which state of the art models show poor performance. Next, we analyze classification schemes within the popular embedding-based nearest-neighbor approach for FSL, with respect to constraints they impose on the embedding space. Triggered by this analysis we propose a novel classification scheme, in which the NOTA category is represented as learned vectors, shown empirically to be an appealing option for FSL.
翻译:我们探索了关系分类(RC)的少热学习(FSL) 。 重点是FSL的现实情景,其中测试实例可能不属于任何目标类别( 不存在上述情况, aka NOTA ), 我们首先重新审视FSL最近流行的数据集结构, 指出其不现实的数据分布。 为了纠正这一点, 我们提出了一个新方法, 从所监督的RC的现有数据集中获取更现实的少发测试数据, 并将其应用到 TACRED 数据集 。 这为FSL RC 带来了一个新的挑战性基准, 其中艺术模型的状态显示业绩不佳 。 下一步, 我们分析FSL 流行的以近邻为主的嵌入式方法中的分类方案, 及其对嵌入空间的限制。 我们根据这项分析, 提出了一个新的分类方案, 其中NOA 类别作为学习的矢量, 实验性地显示对FSL 具有吸引力。