We study hypergraph visualization via its topological simplification. We explore both vertex simplification and hyperedge simplification of hypergraphs using tools from topological data analysis. In particular, we transform a hypergraph to its graph representations known as the line graph and clique expansion. A topological simplification of such a graph representation induces a simplification of the hypergraph. In simplifying a hypergraph, we allow vertices to be combined if they belong to almost the same set of hyperedges, and hyperedges to be merged if they share almost the same set of vertices. Our proposed approaches are general, mathematically justifiable, and they put vertex simplification and hyperedge simplification in a unifying framework.
翻译:我们通过地形简化来研究高光学可视化。 我们使用地形数据分析工具来探索高光学的顶部简化和高级简化。 我们特别将高光学转换为称为线形图和分层扩展的图形表达方式。 这种图形表述方式的地形简化可以简化高光学。 在简化高光学时,我们允许将脊椎合并,如果它们几乎属于同一套顶层,如果它们拥有几乎相同的顶层。 我们建议的方法是一般性的、数学上合理的,它们将顶部简化和高高高端简化放在一个统一的框架中。