We study the graphical generalization of the 2-choice balls-into-bins process, where rather than choosing any two random bins, the bins correspond to vertices of an underlying graph, and only the bins connected by an edge can be chosen. For any $k(n)$ edge-connected, $d(n)$-regular graph on $n$ vertices and any number of balls, we give an allocation strategy which guarantees that the maximum gap between the bin loads is $O((d/k) \log^4n \log \log n)$, with high probability. We further show that the dependence on $k$ is tight and give an $\Omega((d/k) + \log n)$ lower bound on the gap achievable by any allocation strategy, for any graph $G$. In particular, our result gives polylogarithmic bounds for natural graphs such as cycles and tori, where the classical greedy allocation appears to result in a polynomial gap. Previously such a bound was known only for graphs with good expansion. The construction is based on defining certain orthogonal flows on cut-based R\"{a}cke decomposition of graphs. The allocation algorithm itself, however, is simple to implement and takes only $O(\log(n))$ time per allocation, and can be viewed as a global version of the greedy strategy that compares average load on sets of vertices, rather than on individual vertices.
翻译:我们研究 2 个选球到 bin 的图形化概括化进程, 这个过程不是选择任何两个随机的 bin, 而是选择两个任意的 bin 。 我们进一步显示, 对 $k$ 的依赖性很紧, 并且只能选择一个边缘连接的 bins 。 对于任何 $k( n) 的边缘连接, $d( n) 的固定图形, 任何 $ G$ 的顶点和任何数个球, 我们给出一个分配战略, 保证在 $( (d/ k)\ log4n\ log n) 中, 文件夹的最大差距为 $O( d/ k) 和 log n 。 对于任何 $ g$ 的顶点, 我们给出一个配置战略, 这个配置战略保证, 硬性贪婪分配的最大缺口为$( log4n), 概率很高。 我们进一步显示, 对 $k$( log log) 的顶点是 的顶点是, 和 平均 递增 值 的 值 。, 而不是 递增 方向 的 。 。 的 的 。 根基 。