Generalized approximate message passing (GAMP) is a computationally efficient algorithm for estimating an unknown signal $w_0\in\mathbb{R}^N$ from a random linear measurement $y= Xw_0 + \epsilon\in\mathbb{R}^M$, where $X\in\mathbb{R}^{M\times N}$ is a known measurement matrix and $\epsilon$ is the noise vector. The salient feature of GAMP is that it can provide an unbiased estimator $\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N)$, which can be used for various hypothesis-testing methods. In this study, we consider the bootstrap average of an unbiased estimator of GAMP for the elastic net. By numerically analyzing the state evolution of \emph{approximate message passing with resampling}, which has been proposed for computing bootstrap statistics of the elastic net estimator, we investigate when the bootstrap averaging reduces the variance of the unbiased estimator and the effect of optimizing the size of each bootstrap sample and hyperparameter of the elastic net regularization in the asymptotic setting $M, N\to\infty, M/N\to\alpha\in(0,\infty)$. The results indicate that bootstrap averaging effectively reduces the variance of the unbiased estimator when the actual data generation process is inconsistent with the sparsity assumption of the regularization and the sample size is small. Furthermore, we find that when $w_0$ is less sparse, and the data size is small, the system undergoes a phase transition. The phase transition indicates the existence of the region where the ensemble average of unbiased estimators of GAMP for the elastic net norm minimization problem yields the unbiased estimator with the minimum variance.


翻译:广义近似消息传递(Generalized approximate message passing, GAMP)是一种从随机线性测量中估计未知信号 $w_0\in\mathbb{R}^N$ 的计算有效算法,其中 $y= Xw_0 + \epsilon\in\mathbb{R}^M$ 为已知测量矩阵 $X\in\mathbb{R}^{M\times N}$ 和误差向量 $\epsilon$ 的随机线性测量。GAMP 的显著特点是它可以提供无偏估计量 $\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N)$,可用于各种假设检验方法。在本研究中,我们考虑了对弹性网(elastic net)的无偏估计值进行 Bootstrap 平均的方法。通过数值分析 \emph{approximate message passing with resampling} 的状态演化,后者已被提出用于计算弹性网估计器的 Bootstrap 统计量,我们研究了当 Bootstrap 平均减少无偏估计值方差时,每个 Bootstrap 样本大小和弹性网正则化超参数在渐近设置下 $M,N\to\infty, M/N\to\alpha\in(0,\infty)$ 的影响。结果表明,当实际数据生成过程与正则化的稀疏假设不一致且样本大小较小时,Bootstrap 平均可以有效地降低无偏估计量的方差。此外,我们发现,当 $w_0$ 的稀疏性较弱且数据量较小时,系统将经历相变。该相变表明存在这样一种情况:在这一情况下,用GAMP的无偏估计器的集合平均会产生方差最小的无偏估计器。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员