While live 360 degree video streaming delivers immersive viewing experience, it poses significant bandwidth and latency challenges for content delivery networks. Edge servers are expected to play an important role in facilitating live streaming of 360 degree videos. In this paper, we propose a novel predictive edge caching algorithm (Coffee) for live 360 degree video that employ collaborative FoV prediction and predictive tile prefetching to reduce bandwidth consumption, streaming cost and improve the streaming quality and robustness. Our light-weight caching algorithms exploit the unique tile consumption patterns of live 360 degree video streaming to achieve high tile caching gains. Through extensive experiments driven by real 360 degree video streaming traces, we demonstrate that edge caching algorithms specifically designed for live 360 degree video streaming can achieve high streaming cost savings with small edge cache space consumption. Coffee, guided by viewer FoV predictions, significantly reduces back-haul traffic up to 76% compared to state-of-the-art edge caching algorithms. Furthermore, we develop a transcoding-aware variant (TransCoffee) and evaluate it using comprehensive experiments, which demonstrate that TransCoffee can achieve 63\% lower cost compared to state-of-the-art transcoding-aware approaches.
翻译:暂无翻译