Pedestrian motion behavior involves a combination of individual goals and social interactions with other agents. In this article, we present a non-symmetrical bidirectional recurrent neural network architecture called U-RNN as a sequence encoder and evaluate its relevance to replace LSTMs for various forecasting models. Experimental results on the Trajnet++ benchmark show that the U-LSTM variant can yield better results regarding every available metric (ADE, FDE, Collision rate) than common LSTMs sequence encoders for a variety of approaches and interaction modules. Our implementation of the asymmetrical Bi-RNNs for the Trajnet++ benchmark is available at: github.com/JosephGesnouin/Asymmetrical-Bi-RNNs-to-encode-pedestrian-trajectories
翻译:Pedistrian运动行为涉及将个别目标和社会与其他代理人的互动结合起来。在本篇文章中,我们提出了一个非对称的双向双向经常性神经网络结构,称为U-RNNN,作为序列编码器,并评价其与取代LSTMs以取代各种预测模型的相关性。Trajnet++基准的实验结果表明,U-LSTM变量在每种现有指标(ADE、FDE、碰撞率)方面比通用LSTMs序列编码器在各种办法和互动模块方面产生更好的效果。我们实施Trajnet++基准的对称双向双向双向神经网络(B-RNNNS): guthub.com/JosephGesnoin/Asign-Bi-RNNS-to-encode-peratrian-trajectories。