We study the application of a tailored quasi-Monte Carlo (QMC) method to a class of optimal control problems subject to parabolic partial differential equation (PDE) constraints under uncertainty: the state in our setting is the solution of a parabolic PDE with a random thermal diffusion coefficient, steered by a control function. To account for the presence of uncertainty in the optimal control problem, the objective function is composed with a risk measure. We focus on two risk measures, both involving high-dimensional integrals over the stochastic variables: the expected value and the (nonlinear) entropic risk measure. The high-dimensional integrals are computed numerically using specially designed QMC methods and, under moderate assumptions on the input random field, the error rate is shown to be essentially linear, independently of the stochastic dimension of the problem -- and thereby superior to ordinary Monte Carlo methods. Numerical results demonstrate the effectiveness of our method.
翻译:我们研究将量身定做的准蒙特卡洛(QMC)方法应用于一类受不确定的抛物线部分差分方程限制的最佳控制问题:我们所处的状态是用随机热扩散系数解决抛物线PDE,由控制功能指导。考虑到在最佳控制问题中存在不确定性,目标功能由风险计量组成。我们侧重于两种风险评估措施,两者都涉及对随机变量的高维组成部分:预期值和(非线性)诱导风险计量。高维组成部分是用专门设计的QMC方法进行数字计算,在输入随机字段的适度假设下,误差率显示基本上线性,独立于问题的随机特性层面 -- -- 因而优于通常的蒙特卡洛方法。数字结果显示了我们方法的有效性。