Stochastic partial differential equations (SPDEs) are the mathematical tool of choice for modelling dynamical systems evolving under the influence of randomness. We introduce a novel neural architecture to learn solution operators of PDEs with (possibly stochastic) forcing from partially observed data. The proposed \emph{Neural SPDE} model provides an extension to two popular classes of physics-inspired architectures. On the one hand, it extends Neural CDEs, SDEs, RDEs -- continuous-time analogues of RNNs -- in that it is capable of processing incoming sequential information arriving at an arbitrary resolution, both in space and in time. On the other hand, it extends Neural Operators -- generalizations of neural networks to model mappings between spaces of functions -- in that it can be used to learn solution operators of SPDEs (a.k.a. It\^o maps) depending simultaneously on the initial condition and a realization of the driving noise. By transferring some of its operations to the spectral domain, we show how a Neural SPDE can be evaluated either calling an ODE solver or solving a fixed point problem, inheriting in both cases memory-efficient backpropagation capabilities for training provided by existing adjoint-based or implicit-differentiation-based methods. Experiments on various semilinear SPDEs (including stochastic Navier-Stokes) demonstrate how our model is capable of learning complex spatiotemporal dynamics with better accuracy and using only a modest amount of training data compared to all alternative models, and its evaluation is up to 3 orders of magnitude faster than traditional solvers.


翻译:软化部分差异方程式(SPDEs)是模拟在随机性影响下演变的动态系统的数学选择工具。 我们引入了一个新的神经结构, 学习PDEs的解决方案操作员, 其( 可能具有随机性) 迫使部分观测的数据。 提议的 emph{ Neural SPDE} 模型可以扩展到物理启发建筑的两个受欢迎的类别。 一方面, 它扩展神经CDEs、 SDEs、 RDEs -- REDEs -- 传统NNS的连续时间模拟 -- 因为它能够处理以任意的解析方式到达的相继信息, 无论是在空间还是时间。 另一方面, 它扩展神经操作员 -- -- 神经操作员( 神经操作员的常规化) 来模拟功能空间之间的绘图。 它可以同时学习SPDEs( a. k. a. a. a.

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员