A seminal result in the ICA literature states that for $AY = \varepsilon$, if the components of $\varepsilon$ are independent and at most one is Gaussian, then $A$ is identified up to sign and permutation of its rows [Comon, 1994]. In this paper we study to which extent the independence assumption can be relaxed by replacing it with restrictions on the cumulants of $\varepsilon$. We document minimal cumulant conditions for identifiability and propose efficient estimation methods based on the new identification results. In situations where independence cannot be assumed the efficiency gains can be significant. The proof strategy employed highlights new geometric and combinatorial tools that can be adopted to study identifiability via higher order restrictions in linear systems.
翻译:ICA文献的一项重大成果是,对于$AY = varepsilon$,如果美元的组成部分是独立的,最多一个是Gaussian,那么就确定$A$,以签署和调整其行[Comon, 1994]。在这份文件中,我们研究独立假设在多大程度上可以通过限制积聚$varepsilon美元来加以放松。我们记录了可识别性的最低累积条件,并根据新的识别结果提出了有效的估计方法。在无法假定独立的情况下,效率增益是显著的。我们采用的证据战略突出了新的几何和组合工具,可以通过线性系统中更高的定序限制来研究可识别性。