The exponential growth in smart sensors and rapid progress in 5G networks is creating a world awash with data streams. However, a key barrier to building performant multi-sensor, distributed stream processing applications is high programming complexity. We propose DataX, a novel platform that improves programmer productivity by enabling easy exchange, transformations, and fusion of data streams. DataX abstraction simplifies the application's specification and exposes parallelism and dependencies among the application functions (microservices). DataX runtime automatically sets up appropriate data communication mechanisms, enables effortless reuse of microservices and data streams across applications, and leverages serverless computing to transform, fuse, and auto-scale microservices. DataX makes it easy to write, deploy and reliably operate distributed applications at scale. Synthesizing these capabilities into a single platform is substantially more transformative than any available stream processing system.


翻译:智能传感器的指数增长和5G网络的快速进步正在创造一个充满数据流的世界。然而,建立性能多传感器、分布式流处理应用程序的一个关键障碍是高度的编程复杂性。我们提议DataX,这是一个通过便于交换、转换和整合数据流来提高程序效率的新平台。DataX简化了应用程序的规格,暴露了应用功能(微服务)之间的平行性和依赖性。DataX运行时间自动建立适当的数据通信机制,使微型服务和数据流能够不劳而获地再利用各种应用,并利用不服务器的计算转换、引信和自动规模的微服务。DataX使得在规模上方便地写、部署和可靠地操作分布式应用程序。将这些能力合成为单一的平台要比任何可用的流处理系统都具有很大的变革性。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2020年12月18日
【NeurIPS 2020】通过双向传播的可扩展图神经网络
专知会员服务
27+阅读 · 2020年11月3日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年3月2日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员