Secure multi-party computation (MPC) allows parties to perform computations on data while keeping that data private. This capability has great potential for machine-learning applications: it facilitates training of machine-learning models on private data sets owned by different parties, evaluation of one party's private model using another party's private data, etc. Although a range of studies implement machine-learning models via secure MPC, such implementations are not yet mainstream. Adoption of secure MPC is hampered by the absence of flexible software frameworks that "speak the language" of machine-learning researchers and engineers. To foster adoption of secure MPC in machine learning, we present CrypTen: a software framework that exposes popular secure MPC primitives via abstractions that are common in modern machine-learning frameworks, such as tensor computations, automatic differentiation, and modular neural networks. This paper describes the design of CrypTen and measure its performance on state-of-the-art models for text classification, speech recognition, and image classification. Our benchmarks show that CrypTen's GPU support and high-performance communication between (an arbitrary number of) parties allows it to perform efficient private evaluation of modern machine-learning models under a semi-honest threat model. For example, two parties using CrypTen can securely predict phonemes in speech recordings using Wav2Letter faster than real-time. We hope that CrypTen will spur adoption of secure MPC in the machine-learning community.


翻译:安全多党计算使各方能够进行数据计算,同时保持数据私用。这一能力在机器学习应用方面具有巨大的潜力:它促进培训不同党派拥有的私人数据集的机器学习模型,利用另一党派的私人数据对一方的私人模型进行评估等。虽然一系列研究通过安全的多党计算,实施机器学习模式,但这种实施尚未成为主流。采用安全的多党计算框架受到机械学习研究人员和工程师“说语言”的灵活软件框架的阻碍。为了在机器学习中促进采用安全的MPC,我们介绍了CrypTen:一个软件框架,通过现代机器学习框架中常见的抽象信息,例如加时计算、自动区分和模块神经网络,来展示大众安全的MPC原始产品。本文描述了CrypTen的设计,并衡量其在最先进的文本分类、语音识别和图像分类模式上的表现。我们的基准显示,CrypTen的GPU支持和高性社区之间的高性能通信(一个任意数字),这个软件框架通过现代机器学习框架中常见的机器-Cream-Con 模型,可以进行高效的私人评估,在Wremial-hal-hal-hold-hold-hold-hold-hold-hold-hold-hold-hold-hold-modrommmml 这样的模型下,在使用安全模型中可以进行安全的同步模型中进行安全化的同步的同步的同步的智能模型,可以进行安全的同步的同步的双重学习。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
2018-Geoffrey Hinton-深度学习基础
深度学习与NLP
10+阅读 · 2018年9月23日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
1+阅读 · 2021年10月25日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
2018-Geoffrey Hinton-深度学习基础
深度学习与NLP
10+阅读 · 2018年9月23日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员